520美书楼

手机浏览器扫描二维码访问

科普向 关于希尔伯特空间(第1页)

这里是道长的科普频道!

正文里,我们的主角王崎第二次使用的金手指,是来自地球的大数学家大卫·希尔伯特的希尔伯特空间。

由于不想再正文水字数,所以贫道将这个数学方法的科普贴在这里!有兴趣的书友不妨进来一看哦

阿尔伯特空间并不是确实存在的,而是抽象的、用于演算的工具,即相空间。

每个读过中学数学的朋友应该都建立过二维的笛卡儿平面:画一条x轴和一条与其垂直的y轴,并加上箭头和刻度也就是通常所说的平面直角坐标系。在这样一个平面系统里,每一个点都可以用一个包含两个变量的坐标xy)来表示,例如12),或者4.35.4),这两个数字分别表示该点在x轴和y轴上的投影。当然,并不一定要使用直角坐标系统,也可以用极坐标或者其他坐标系统来描述一个点,但不管怎样,对于2维平面来说,用两个数字就可以唯一地指明一个点了。如果要描述三维空间中的一个点,那么我们的坐标里就要有3个数字,比如123),这3个数字分别代表该点在3个互相垂,直的维度方向的投影。

让我们扩展一下思维:假如有一个四维空间中的点,我们又应该如何去描述它呢?显然我们要使用含有4个变量的坐标,比如1234),如果我们用的是直角坐标系统,那么这4个数字便代表该点在4个互相垂直的维度方向的投影,推广到n维,情况也是一样。诸位大可不必费神在脑海中努力构想4维或者11维空间是如何在4个乃至11个方向上都互相垂直的,事实上这只是我们在数学上构造的一个假想系统而已。

我们所关心的是:n维空间中的一个点可以用n个变量来唯一描述,而反过来,n个变量也可以用一个n维空间中的点来涵盖。

现在让我们回到物理世界,我们如何去描述一个普通的粒子呢?在每一个时刻t,它应该具有一个确定的位置坐标q1q2q3),还具有一个确定的动量p。动量也就是速度乘以质量,是一个矢量,在每个维度方向都有分量,所以要描述动量p还得用3个数字:p1,p2和p3,分别表示它在3个方向上的速度。总而言之,要完全描述一个物理质点在t时刻的状态,我们一共要用到6个变量。而我们在前面已经看到了,这6个变量可以用6维空间中的一个点来概括,所以用6维空间中的一个点,我们可以描述1个普通物理粒子的经典行为。我们这个存心构造出来的高维空间就是系统的相空间。

假如一个系统由两个粒子组成,那么在每个时刻t这个系统则必须由12个变量来描述了。但同样,我们可以用12维空间中的一个点来代替它。对于一些宏观物体,比如一只猫,它所包含的粒子可就太多了,假设有n个,不过这不是一个本质问题,我们仍然可以用一个6n维相空间中的质点来描述它。这样一来,一只猫在任意一段时期内的活动其实都可以等价为6n空间中一个点的运动假定组成猫的粒子数目不变)。我们这样做并不是吃饱了饭太闲的缘故,而是因为在数学上,描述一个点的运动,哪怕是6n维空间中的一个点,也要比描述普通空间中的一只猫来得方便。在经典物理中,对于这样一个代表了整个系统的相空间中的点,我们可以用所谓的哈密顿方程去描述,并得出许多有益的结论。

部分选自曹天元《量子物理史话

我真的只想做角色球员  虐仙记  赘婿当道全文免费 阅读小说最新  为师实在是太弱了  冷血老公太温柔  我是来种地的  流浪仙人  我在游戏世界搞基建  毕业就结婚吧  跃马西凉  顾辰神武霸帝  穿越之我不想做驸马  反派:黑化女主们,跪求我当坏人  未来之树  清穿后我绑定了强国系统  枫灵大陆  神雕战神  重生乐神  黑夜之眼  换嫁后发现质子夫君他爱我  

热门小说推荐
重生九二之商业大亨

重生九二之商业大亨

新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...

都市寻艳录

都市寻艳录

身世坎坷历经沧桑人间情意究竟为何物?妈妈是什么?奶奶是什么?姑姑婶婶又是什么?也许,都是女人罢了。你们给了我们生活的必须,但是她们没有给我们家庭的温暖,因此从理智上我们应该感激你们的,可是感情上很多时候是会出现偏差的。我喜欢熟女喜欢年龄稍大的女人当然是女人我都会喜欢当然是那种好女人...

异界召唤之千古群雄

异界召唤之千古群雄

这里有西楚霸王‘项羽’。这里有绝代杀神‘白起’。这里有千古奇人‘鬼谷子’。这里有西府赵王‘李元霸’。这里有盖世猛将‘吕布’。这是一个开挂的故事,生死看淡,不服就干!人呢?快进来扶扶朕(疯狂暗示加入书架),朕要拿传国玉玺,给读者老爷们砸核桃!什么?不吃核桃?没关系,拿朕的金箍棒来。给读者老爷们先剔剔牙,再随朕前往...

穿越大周(武唐风流)

穿越大周(武唐风流)

李逸飞,大唐前太子李贤之子,因其父被武则天毒害,从小就被逍遥老人收养,十年之后,学艺有成的李逸飞下山报仇,最后经过与武则天的一番较量终于将女皇降服,成功光复李唐江山,揽江山美人于一身,享受人间帝王之风流。...

修真聊天群

修真聊天群

某天,宋书航意外加入了一个仙侠中二病资深患者的交流群,里面的群友们都以‘道友’相称,群名片都是各种府主洞主真人天师。连群主走失的宠物犬都称为大妖犬离家出走。整天聊的是炼丹闯秘境炼功经验啥的。突然有一天,潜水良久的他突然发现群里每一个群员,竟然全部是修真者,能移山倒海长生千年的那种!啊啊啊啊,世界观在...

我的校花未婚妻

我的校花未婚妻

当被清纯校花火辣女杀手御姐总裁绝美女老师争相纠缠!贺轩很烦恼帅,是一种病!我是校花的未婚夫,天下美女的未婚夫!传奇杀手龙潜花都,却不想惹上一身风流情债!...

每日热搜小说推荐