手机浏览器扫描二维码访问
一个封闭的曲线把平面分成了内部和外部。
当这个封闭的曲线是圆圈的时候,显而易见能看出哪个是外部,哪个是内部。
而当这个封闭的曲线是复杂的情况下,就很难直接看出来,哪里是外部,哪里是内部了。
若尔当曲线定理关于平面上简单闭曲线性质的一个经典结果.在欧氏平面Rz上,任意一条简单(即自身不相交)闭曲线J把平面分成两部分,使得在同一部分的任意两点,可用一条不与J相交的弧相连;在不同部分的两点若要相连,则连结的弧必须与J相交.这就是着名的若尔当曲线定理.
他提出了证明,但是这个证明特别繁杂,后来直到1905年,维布伦(Veblen,0.)才第一次给出了一个正确的证明.
若尔当曲线定理证起来之所以困难,究其原因还是对于什么是简单闭曲线这个概念不明确。
用现代的语言,称一个与圆周S’同胚的拓扑空间为一条若尔当曲线。
于是若尔当曲线定理可正式地表达为:平面R-中的每一条若尔当曲线J把RZ分为两个以J为公共边界的区域,其中区域指的是连通开子集。
这个事情可以延伸到,一个封闭的曲面把空间分成了内部和外部。
一个简单的球壳,容易看出哪里是内部,哪里是外部,但是这个球壳变换成复杂的形状的时候,就难以区分了。
这个也可以借鉴若尔当定理。
当一个高维球壳把高维空间分成内外两个部分的时候,也弄用若尔当定理进行推广吗?
那么一个高维系统,内外两个部分是什么意思?如果找到高维球壳对系统分成“内”与“外”两个部分呢?这个内外的意义是什么呢?
多个事件,看做一个高维空间系统,对此系统内的多种因素分成多个维度,一个事件形成一个复杂的高维的面,如何找内外,这个内外是什么意思?如何表达?能用矩阵的思想吗?
如何能够把复杂的系统的内外两个部分,用一种符号或者图形的方式来表达呢?
喜欢数学心请大家收藏:()数学心
宗门全是美强惨,小师妹是真疯批 我的徒弟不对劲 暗无 玄灵界都知道我柔弱可怜但能打 重生在宝可梦,我的后台超硬 混迹娱乐圈的日子 至尊战皇 永恒大陆之命运 穿成商户女摆烂,竟然还要逃难! 译文欣赏:博伽瓦谭 农夫是概念神?三叶草了解一下! 新人驾到 我一枪一剑杀穿大陆 穿到八零,我自带锦鲤系统! 哦豁!虐文炮灰不干了! 快穿之炮灰得偿所愿 摊牌了,我爹是绝顶高手! 在下潘凤,字无双 国运:拥有多重身份的我很合理吧 大明:开局气疯朱元璋,死不登基
为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...
左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...
穷小子楚帅,先赚了一个极品级二奶,却原来是间谍精英,然后,一个大陆女警官凌小杰好有暗恋他,可是,穷小子还有一个比鸟齐飞的原配初恋,还有一个女朋友的死党小魔女蓝菲,还有几乎是后宫佳丽如云,不过,一个个美眉都有好神秘的身份,你中有我,我中有你...
新书我的特效时代上传,求收藏,求推荐!落魄功夫小生陆麟,拥有一台能做出炫酷特效的超级电脑。从此华语影片不在是低成本小制作的代名词。奇幻瑰丽的仙侠世界登上银幕,沉迷华夏网文的外国小哥,不再期待漫威!书友群481993635...
她死不瞑目,在江边守了三天三夜,来收尸的却不是她丈夫看着男人轻吻自己肿胀腐烂的尸体,她心中撼动不已,暗下许诺如果能重生,一定嫁给他!后来,她真的重生了,却成了他妹妹(⊙o⊙)慕容承说你再敢死给我看,我不介意变个态,和尸体洞房。她欲哭无泪,我滴哥!你早就变态了好么?!轻松搞笑,重口甜爽,可放心阅读...
市一高新丁黄景耀因得罪骨干教师被恶意针对,不堪受辱辞职后意外得到仙家至宝。重新执教县一高,左手录运簿册掌天下文章,可查看每一个学生学习天赋,提升天赋。右手文昌大印掌考场气运,财富官运。教师以教育水平和升学率为本,黄景耀渐渐发现他的本钱雄厚的有些令人发指,一次次撼动整个教育界,又远不止单一的教育界。...