520美书楼

手机浏览器扫描二维码访问

第二百七十章 雅可比行列式矩阵(第1页)

由于知道一个平面上曲线的导数,就是对应点上的斜率。

那么在曲面中,是不是该有一个切曲面。

而在曲体里,会有切体。

如何去用数学工具去研究呢?

曲面中,只有一个x变量,出现的就是对应的直线。

而曲面中,需要一个平面的话,就需要两个直线去确定一个平面。

而曲面是在x、y两个变量中的变化,曲面方程的求导只能按照直线求导的方式来。

那先去求x的导数,还是先求y的导数?这个先后如果求的导数不同话,那就说明有一种方向不同的连续性的东西。

当然这也是以后,柯西准则,去判断曲面连续性的东西。

而这里,去对曲面甚至曲体甚至曲高维体求导,就用雅可比行列式。

雅可比行列式通常称为雅可比式,它是以n个n元函数的偏导数为元素的行列式。

事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。

若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。

这可用行列式的乘法法则和偏导数的连锁法则直接验证。

也类似于导数的连锁法则。

偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。

雅可比行列式求导,两个变量之间是垂直的,但是也能反应出斜向的一些曲率变化力。

对雅可比矩阵的理解就是对多变量向量的求导,跟y=f(x)代表曲线切线一样,雅可比矩阵代表了一个高维度的切空间,有了这个切空间,就可以通过设定初值迭代出无法得到解析解的微分方程组的数值解。比如三体、多摆等问题~

雅可比在想,如果是任意的高维表面,我在这个表面上,开始做出对应这个维度的切体,这个切体沿着这个高维面滑动,滑动之时,这个切体会发生变化。

可以研究这个切体的变化来推敲这个高维物体的性质。

这样的模型很难感悟,需要感悟这些数字,因为光是数字,很难形成图形,而这些切体也难于用大脑想象,同时切体中的形状也会相互交错。

喜欢数学心请大家收藏:()数学心

暗无  穿到八零,我自带锦鲤系统!  永恒大陆之命运  大明:开局气疯朱元璋,死不登基  农夫是概念神?三叶草了解一下!  快穿之炮灰得偿所愿  译文欣赏:博伽瓦谭  至尊战皇  摊牌了,我爹是绝顶高手!  国运:拥有多重身份的我很合理吧  我的徒弟不对劲  玄灵界都知道我柔弱可怜但能打  混迹娱乐圈的日子  我一枪一剑杀穿大陆  穿成商户女摆烂,竟然还要逃难!  哦豁!虐文炮灰不干了!  新人驾到  宗门全是美强惨,小师妹是真疯批  重生在宝可梦,我的后台超硬  在下潘凤,字无双  

热门小说推荐
美梦时代

美梦时代

为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...

大小姐的近身狂医

大小姐的近身狂医

左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...

色间道

色间道

穷小子楚帅,先赚了一个极品级二奶,却原来是间谍精英,然后,一个大陆女警官凌小杰好有暗恋他,可是,穷小子还有一个比鸟齐飞的原配初恋,还有一个女朋友的死党小魔女蓝菲,还有几乎是后宫佳丽如云,不过,一个个美眉都有好神秘的身份,你中有我,我中有你...

华娱特效大亨

华娱特效大亨

新书我的特效时代上传,求收藏,求推荐!落魄功夫小生陆麟,拥有一台能做出炫酷特效的超级电脑。从此华语影片不在是低成本小制作的代名词。奇幻瑰丽的仙侠世界登上银幕,沉迷华夏网文的外国小哥,不再期待漫威!书友群481993635...

慕少,你老婆又重生了

慕少,你老婆又重生了

她死不瞑目,在江边守了三天三夜,来收尸的却不是她丈夫看着男人轻吻自己肿胀腐烂的尸体,她心中撼动不已,暗下许诺如果能重生,一定嫁给他!后来,她真的重生了,却成了他妹妹(⊙o⊙)慕容承说你再敢死给我看,我不介意变个态,和尸体洞房。她欲哭无泪,我滴哥!你早就变态了好么?!轻松搞笑,重口甜爽,可放心阅读...

极品仙师

极品仙师

市一高新丁黄景耀因得罪骨干教师被恶意针对,不堪受辱辞职后意外得到仙家至宝。重新执教县一高,左手录运簿册掌天下文章,可查看每一个学生学习天赋,提升天赋。右手文昌大印掌考场气运,财富官运。教师以教育水平和升学率为本,黄景耀渐渐发现他的本钱雄厚的有些令人发指,一次次撼动整个教育界,又远不止单一的教育界。...

每日热搜小说推荐