手机浏览器扫描二维码访问
虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的Cramer悖论就是一个漂亮的例子。
在描述Cramer悖论之前,让我们先来考虑一个简单的情况。
两条直线交于一点。
反过来,过一点可以做两条不同的直线。
事实上,过一点可以做无数条直线。
确定一条直线需要两个点才够。
一切都很正常。
现在,考虑平面上的两条三次曲线。
由于将两个二元三次方程联立求解,最多可以得到9组不同的解,因此两条三次曲线最多有9个交点。另外,三次曲线的一般形式为
x^3+a·x^2·y+b·x·y^2+c·y^3+d·x^2+e·x·y+f·y^2+g·x+h·y+i=0
这里面一共有9个未知系数。
代入曲线上的9组不同的(x,y),我们就能得出9个方程,解出这9个未知系数,恢复出这个三次曲线的原貌。
也就是说,平面上的9个点唯一地确定了一个三次曲线。
这次貌似就出问题了:“两条三次曲线交于9个点”和“9个点唯一地确定一条三次曲线”怎么可能同时成立呢?
既然这9个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?
在没有线性代数的年代,这是一个令人匪夷所思的问题。
Cramer和Euler是同一时代的两位大数学家。
他们曾就代数曲线问题有过不少信件交流。
上面这个问题就是1744年9月30日Cramer在给Euler的信中提出来的。
在信中,Cramer摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用9个点唯一地确定下来,两条三次曲线可能产生出9个交点。
Cramer向Euler提出了自己的疑问:这两个结论怎么可能同时成立呢?
Euler心中的疑问不比Cramer的少。
接下来的几年里,他都在寻找这个矛盾产生的源头。
1748年,Euler发表了一篇题为Surunecontradictionapparentedansladoctrinedeslignescourbes(关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。
永恒大陆之命运 新人驾到 穿成商户女摆烂,竟然还要逃难! 重生在宝可梦,我的后台超硬 大明:开局气疯朱元璋,死不登基 译文欣赏:博伽瓦谭 暗无 宗门全是美强惨,小师妹是真疯批 我的徒弟不对劲 快穿之炮灰得偿所愿 混迹娱乐圈的日子 在下潘凤,字无双 农夫是概念神?三叶草了解一下! 哦豁!虐文炮灰不干了! 穿到八零,我自带锦鲤系统! 摊牌了,我爹是绝顶高手! 至尊战皇 国运:拥有多重身份的我很合理吧 玄灵界都知道我柔弱可怜但能打 我一枪一剑杀穿大陆
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...
一种能帮忙泡妞的异能会给主角的人生带来怎样的奇遇?很简单,进来一看便知!...
全本免费,新书斗罗无敌从俘获女神开始斗罗之收徒就变强斗罗之酒剑斗罗王圣穿越到了斗罗1的世界之中,在觉醒武魂的那一天,竟然是先天二十级的魂力。看王圣如何组建属于他自己的7怪。当他的7怪与唐三的7怪相遇时,又会是怎样的一个场面?谁强?谁弱?谁才是真正的主角!粉丝群1304623681...
师父死了,留下美艳师娘,一堆的人打主意,李福根要怎么才能保住师娘呢?...
万人追更,火爆爽文农村小子偶然获得神农传承,从此一飞冲天,成为人中龙。带领大家走上一条致富路。...
一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...