手机浏览器扫描二维码访问
受到阿贝尔的信,阿贝尔声称自己证明了五次方程没有根式解,高斯嗤之以鼻。
“不是没有解,仅仅是因为你解不出来吧?”
高斯被阿贝尔这么一搞,就想要好好琢磨关于解方程的问题,而且不仅仅想给阿贝尔这个‘民科’一个教训,同时也想要在更高层次上来回答这个问题。
这样才能体现出自己数学王子这个霸气的称号。
高斯准备想给阿贝尔一个回信,上面说:“小家伙,知不知道在百年前,就有人得知了代数学基本定理。”
代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。
高斯继续写着:“而且这是罗伯特在1608年已经证明的。”
这时,高斯停笔了,他突然觉得有些不对劲,他只是知道这件事,但是没有见过罗伯特的证明过程。
高斯放下笔,开始去寻找证明过程。
高斯知道代数基本定理在代数乃至整个数学中起着基础作用。最早该定理由德国数学家罗特于1608年提出。
高斯不知的是关于代数学基本定理的证明,后有200多种证法。迄今为止,该定理尚无纯代数方法的证明。
高斯终于找到该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯仔细分析,证明仍然很不严格的。
高斯说:“我得试试如何证明代数基本定理。”
高斯没有再回信,只是专注于寻找证明方法,终于在1799年成功给出代数基本定理的第一个严格证明,在当年的哥廷根大学的博士论文中交出来。
后来有几种证明方法,复分析证明,拓扑学证明和代数证明。
大数学家J.P.塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。
美国数学家JohnWillardMilnor在数学名着《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。
复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。
喜欢数学心请大家收藏:()数学心
农夫是概念神?三叶草了解一下! 至尊战皇 混迹娱乐圈的日子 哦豁!虐文炮灰不干了! 国运:拥有多重身份的我很合理吧 暗无 我的徒弟不对劲 穿成商户女摆烂,竟然还要逃难! 穿到八零,我自带锦鲤系统! 宗门全是美强惨,小师妹是真疯批 新人驾到 大明:开局气疯朱元璋,死不登基 我一枪一剑杀穿大陆 玄灵界都知道我柔弱可怜但能打 永恒大陆之命运 译文欣赏:博伽瓦谭 摊牌了,我爹是绝顶高手! 在下潘凤,字无双 重生在宝可梦,我的后台超硬 快穿之炮灰得偿所愿
左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...
已完结,新书求支持!小神医魂穿女尊王朝,原主臭名昭著,残暴不仁,身后留下一堆烂摊子。家徒四壁,茅屋漏雨,粮缸又已见了底。面对美貌的夫君,又瞅瞅丑不拉叽的自己,她狂奔在一条通往钢牙小白兔的康庄大道上!敢觊觎她夫君?揍,没有拳头解决不了的事情!如果有,那就接着揍!穷?医术,香粉,布艺,美食,酒庄,生意做起来,铺子开...
...
高手从来都是寂寞的,可是我却想做一个逍遥高手京城世家子弟楚修为了逃避家族逼婚,远走他乡,哪里想到却因此卷入了更多的桃花之中各色美女与他纠缠不清,就连那霸道的未婚妻也是不远千里追来面对这等桃色劫难,楚修只有一个念头我想回家!各位书友要是觉得校园逍遥高手还不错的话请不要忘记向您...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...
炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...