手机浏览器扫描二维码访问
由于知道一个平面上曲线的导数,就是对应点上的斜率。
那么在曲面中,是不是该有一个切曲面。
而在曲体里,会有切体。
如何去用数学工具去研究呢?
曲面中,只有一个x变量,出现的就是对应的直线。
而曲面中,需要一个平面的话,就需要两个直线去确定一个平面。
而曲面是在x、y两个变量中的变化,曲面方程的求导只能按照直线求导的方式来。
那先去求x的导数,还是先求y的导数?这个先后如果求的导数不同话,那就说明有一种方向不同的连续性的东西。
当然这也是以后,柯西准则,去判断曲面连续性的东西。
而这里,去对曲面甚至曲体甚至曲高维体求导,就用雅可比行列式。
雅可比行列式通常称为雅可比式,它是以n个n元函数的偏导数为元素的行列式。
事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。
若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。
这可用行列式的乘法法则和偏导数的连锁法则直接验证。
也类似于导数的连锁法则。
偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。
雅可比行列式求导,两个变量之间是垂直的,但是也能反应出斜向的一些曲率变化力。
对雅可比矩阵的理解就是对多变量向量的求导,跟y=f(x)代表曲线切线一样,雅可比矩阵代表了一个高维度的切空间,有了这个切空间,就可以通过设定初值迭代出无法得到解析解的微分方程组的数值解。比如三体、多摆等问题~
雅可比在想,如果是任意的高维表面,我在这个表面上,开始做出对应这个维度的切体,这个切体沿着这个高维面滑动,滑动之时,这个切体会发生变化。
可以研究这个切体的变化来推敲这个高维物体的性质。
这样的模型很难感悟,需要感悟这些数字,因为光是数字,很难形成图形,而这些切体也难于用大脑想象,同时切体中的形状也会相互交错。
喜欢数学心请大家收藏:()数学心
混迹娱乐圈的日子 哦豁!虐文炮灰不干了! 永恒大陆之命运 暗无 国运:拥有多重身份的我很合理吧 译文欣赏:博伽瓦谭 玄灵界都知道我柔弱可怜但能打 农夫是概念神?三叶草了解一下! 穿到八零,我自带锦鲤系统! 摊牌了,我爹是绝顶高手! 新人驾到 重生在宝可梦,我的后台超硬 宗门全是美强惨,小师妹是真疯批 快穿之炮灰得偿所愿 至尊战皇 在下潘凤,字无双 穿成商户女摆烂,竟然还要逃难! 我一枪一剑杀穿大陆 大明:开局气疯朱元璋,死不登基 我的徒弟不对劲
左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...
已完结,新书求支持!小神医魂穿女尊王朝,原主臭名昭著,残暴不仁,身后留下一堆烂摊子。家徒四壁,茅屋漏雨,粮缸又已见了底。面对美貌的夫君,又瞅瞅丑不拉叽的自己,她狂奔在一条通往钢牙小白兔的康庄大道上!敢觊觎她夫君?揍,没有拳头解决不了的事情!如果有,那就接着揍!穷?医术,香粉,布艺,美食,酒庄,生意做起来,铺子开...
...
高手从来都是寂寞的,可是我却想做一个逍遥高手京城世家子弟楚修为了逃避家族逼婚,远走他乡,哪里想到却因此卷入了更多的桃花之中各色美女与他纠缠不清,就连那霸道的未婚妻也是不远千里追来面对这等桃色劫难,楚修只有一个念头我想回家!各位书友要是觉得校园逍遥高手还不错的话请不要忘记向您...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...
炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...